EQUILIBRES LIQUIDE-VAPEUR ISOTHERMES DE MELANGES BINAIRES FORMES DE COMPOSES HETEROCYCLIQUES TELS QUE: MORPHOLINE, TETRAHYDROPYRANNE, PIPERIDINE ET 1,4-DIOXANE

F. B. Belaribi, G. Belaribi-Boukais, A. Ait-Kaci et J. Jose¹

Université des Sciences et de la Technologie Houari Boumédiène, Laboratoire de Thermodynamique des Solutions. BP 139 Dar El Beida Alger, Algérie ¹Université de Lyon I, Laboratoire de Chimie Analytique, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne, Lyon, France

(Reçu le 26 Février 1993; forme révisée le 10 Mars 1994)

Abstract

The authors have measured the vapour pressure of four binary systems, morpholine+piperidine, morpholine+1,4-dioxane, morpholine+tetrahydropyrane and 1,4-dioxane+tetrahydropyrane. The measurements were carried out using an isoteniscope built by J. Jose [1]. The vapour pressure, excess Gibbs free energies at 298.15, 303.15, 313.15, 323.15, 333.15 and 343.15 K are reported for these mixtures. The excess Gibbs free energies have been fitted to the Redlich-Kister equation.

Keywords: excess Gibbs free energy, vapour-liquid equilibrium

Introduction

Dans le présent article nous nous proposons de compléter la littérature en données thermodynamiques expérimentales sur les mélanges organiques liquides formés de deux constituants hétérocycliques. Ces données serviront à l'étude des interactions moléculaires dans ces mélanges, en vue d'une contribution au développement des théories des solutions liquides. Cette étude fera l'objet d'un prochain article.

Afin d'atteindre l'objectif de ce travail, nous avons déterminé les diagrammes d'équilibre liquide-vapeur de quelques mélanges binaires formés de composés hétérocycliques tels que: morpholine, pipéridine, tétrahydropyranne et 1,4-dioxane. Nous avons établi expérimentalement dans l'intervalle de température 298.15–343.15 K les diagrammes d'équilibre liquide-vapeur des systèmes, morpholine+pipéridine, morpholine+tétrahydropyranne, morpholine+1,4-di-oxane et 1,4-dioxane+tétrahydropyranne.

Pour cela les pressions de vapeur des composés purs et des mélanges binaires ont été mesurées à l'aide d'un isoténiscope construit au laboratoire par J. Jose [1]. Les enthalpies libres molaires totales d'excès ont été calculées par la méthode de Barker [2], en représentant les valeurs expérimentales d'équilibre liquide-vapeur à l'aide de l'équation de Redlich-Kister.

Les produits utilisés, d'origine Janssen n'ont pas subi de purification supplémentaire.

Résultats

Pressions de vapeur des composés purs

Les pressions de vapeur expérimentales des constituants purs ont été ajustées par la méthode des moindres carrés itérative à l'aide de l'équation d'Antoine:

$$\log_{10} = A - \frac{B}{T+C} \tag{1}$$

La pression P et la température T, expérimentales, sont exprimées en millimètres de mercure et en degrés Celsius, respectivement.

Pour ces quatre composés nous avons réuni dans le tableau 1, les pressions de vapeur P et les températures T, expérimentales, dans le tableau 2, les coef-

Mor	pholine	Pipéridine		1,4–Dioxane		Tétrahydropyranne	
<i>T /</i> °C	P / mmHg	<i>T</i> /°C	P / mmHg	<i>T</i> /°C	P / mmHg	<i>T/</i> °C	P / mmHg
24.66	9.916	24.88	30.114	24.71	35.230	24.64	69.220
29.71	13.306	29.66	38.762	29.71	45.581	30.56	91.014
34.62	17.529	34.89	50.423	34.79	58.700	34.79	110.052
39.61	22.959	40.04	64.660	40.09	75.546	40.09	137.958
44.55	29.717	45.40	82.933	45.78	98.003	45.12	170.211
49.61	38.276	50.15	102.557	50.15	118.682	49.96	205.893
54.71	49.017	55.31	127.982	55.80	150.860	55.50	254.742
59.48	61.213	60.20	156.746	60.82	185.130	60.15	302.396
65.11	78.846	65.27	191.713	65.45	222.213	64.72	355.838
69.94	97.343	70.10	230.548	70.57	269.887	70.10	428.186

Tableau 1 Pressions de vapeur expérimentales des corps purs en fonction de la température

ficients A, B, C ainsi que l'écart relatif moyen $\delta P/P$ exprimé en pourcentage, obtenus après lissage.

Nos résultats expérimentaux sont en accord les données de la littérature [3-5, 7, 12, 13, 14].

	Morpholine	Pipéridine	1,4-Dioxane	Tétrahydropyranne
Α	7.49375	6.95350	7.14631	6.88193
В	1632.90	1285.15	1368.91	1230.50
С	226.6496	209.8655	219.7594	219.4163
100 δ <i>P/P</i>	0.034	0.046	0.025	0.057
S.D.(D. (.D.	A \/ -			

Tableau 2 Paramètres de lissage obtenus pour l'équation d'Antoine (1)

 $\delta P/P = (P_{exp} - P_{calc})/P_{exp}$

Tableau 3 Pressions de vapeur expérimentales (en kPa) en fonction de la composition et de la température; Ecart relatif moyen $\delta P/P$ exprimé en pourcentage

Fraction	Température / K								
molaire (x ₁)	298.15	303.15	313.15	323.15	333.15	343.15			
		Système: mor	pholine (1) –	pipéridine (2	l)				
0.000	4.041	5.255	8.610	13.581	20.712	30.648			
0.095	3.855	5.016	8.222	12.998	19.842	29.375			
0.260	3.533	4.582	7.531	11.896	18.195	27.086			
0.372	3.263	4.258	7.049	11.156	17.073	25.435			
0.533	2.878	3.791	6.237	9.955	15.323	22.897			
0.660	2.575	3.361	5.558	8.912	13.758	20.724			
0.804	2.158	2.826	4.711	7.576	11.838	17.939			
0.900	1.798	2.373	4.012	6.533	10.283	15.636			
1.000	1.348	1.804	3.125	5.203	8.360	13.009			
100 δ <i>P/P</i>	0.29	0.11	0.11	0.07	0.07	0.08			
	Systè	me: morphol	ine (1) – tétr	ahydropyran	ne (2)				
0.000	9.385	11.839	18.343	27.512	40.087	56.912			
0.114	8.617	10.869	16.847	25.323	36.965	52.641			
0.231	7.837	9.897	15.373	23.150	33.871	48.290			
0.381	6.843	8.649	13.463	20.337	29.829	42.709			
0.497	6.063	7.667	11.965	18.093	26.586	38.229			
0.580	5.441	6.900	10.813	16.416	24.220	34.832			
0.723	4.337	5.509	8.674	13.250	19.692	28.550			
0.820	3.455	4.406	6.998	10.786	16.183	23.712			
1.000	1.348	1.804	3.125	5.203	8.360	13.009			
100 δ <i>P/P</i>	0.12	0.09	0.06	0.05	0.07	0.04			

Fraction			Tempéra	ature / K		
molaire (x_1)	298.15	303.15	313.15	323.15	333.15	343.15
	S	ystème: mor	pholine (1) –	1,4-dioxane (2)	
0.000	4.768	6.170	10.030	15.727	23.880	35.229
0.110	4.474	5.796	9.424	14.791	22.511	33.277
0.257	4.016	5.194	8.467	13.339	20.320	30.112
0.426	3.502	4.533	7.390	11.677	17.877	26.655
0.486	3.297	4.282	7.010	11.096	17.013	25.336
0.567	3.036	3.944	6.475	10.272	15.808	23.576
0.648	2.787	3.611	5.940	9.435	14.550	21.697
0.790	2.245	2.938	4.890	7.849	12.236	18.451
0.926	1.725	2.259	3.830	6.262	9.841	15.094
1.000	1.348	1.804	3.125	5.203	8.360	13.009
100 δ <i>P/P</i>	0.31	0.20	0.17	0.18	0.13	0.11
	Systè	me: 1,4-diox	ane (1) – tétra	ahydropyrani	ne (2)	
0.000		11.839	18.343	27.512	40.087	
0.125		11.450	17.752	26.668	38.960	
0.302		10.710	16.672	25.153	36.887	
0.457		10.024	15.680	23.757	34.943	
0.546		9.575	15.029	22.823	33.657	
0.691		8.744	13.781	21.038	31.172	
0.858		7.510	11.994	18.501	27.655	
1.000		6.170	10.030	15.727	23.880	
1 0 0 δ <i>P/P</i>		0.10	0.07	0.07	0.07	

suite)

 $\delta P/P = (P_{exp} - P_{calc})/P_{exp}$

 Tableau 4 Volumes molaires à l'état liquide, et seconds coefficients molaires du viriel, des corps purs

_	morp	morpholine		pipéridine		1,4-dioxane		tétrahydropyranne	
<i>T /</i> K	v_i^o	- B _{ii}	vi	- B _{ii}		- B _{ii}	vio	B ii	
				a ³ ·mol ⁻¹					
298.15	87.5	2690	99.5	2100	85.7	1920	97.7	1710	
303.15	87.9	2510	100.1	1990	86.2	1810	98.8	1630	
313.15	88.7	2220	101.2	1790	87.1	1630	99.8	1480	
323.15	89.5	1980	102.4	1630	88.0	1480	100.8	1350	
333.15	90.4	1780	103.5	1490	89.0	1350	101.8	1250	
343.15	91.2	1620	104.7	1370	89.9	1240	102.8	1160	

Fraction	Enthalpie libre molaire totale d'excès g^E / J·mol ⁻¹								
molaire (x_1)	298.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K			
0.0	0	0	0	0	0	0			
0.1	95	91	91	84	78	74			
0.2	165	161	156	147	137	132			
0.3	213	210	20 1	192	180	175			
0.4	243	241	227	220	208	202			
0.5	257	254	238	231	220	213			
0.6	253	248	233	225	216	207			
0.7	231	223	211	201	194	184			
0.8	1 85	175	168	158	153	143			
0.9	111	102	99	92	90	82			
1.0	0	0	0	0	0	0			

Tableau 5a Système: morpholine (1) – pipéridine (2)

Tableau 5b Paramèters de lissage de l'équation de Redlich-Kister

<i>T /</i> K	<u>A</u> 1	σA_1	A ₂	σA_2	A3	σA_3
298.15	0.4144	0.0073	0.0434	0.0147	0.0734	0.0265
303.15	0.4024	0.0027	0.0305	0.0055	0.0383	0.0099
313.15	0.3661	0.0033	0.0231	0.0067	0.0615	0.0121
323.15	0.3434	0.0022	0.0214	0.0045	0.0316	0.0082
333.15	0.3173	0.0022	0.0298	0.0045	0.0281	0.0083
343.15	0.2981	0.0025	0.0190	0.0052	0.0084	0.0098

En effet, E. Hala et T. Boublik [3] reportent, pour la pipéridine, une pression de vapeur de 101.38 mmHg à 50° C. La valeur de la pression de vapeur à 25° C, obtenue pour le même composé, par S. Cabanni et N. Ceccanti [5], est 30.18 mmHg. L'écart relatif moyen entre nos valeurs et celles de ces auteurs est inférieur à 0.5%.

Les valeurs de la pression de vapeur de la morpholine, entre 25° C et 70° C, reportées dans A.C.S. [7], déterminées par C. Pettenati et coll. [12] et obtenues par M. Palzewska-Tulinska et coll. [13], présentent respectivement, des écarts relatifs moyens de 0.2%, 1,8% et 0.6%, par rapport à nos valeurs correspondantes.

Pour le 1,4-dioxane, dans le domaine de température $25-70^{\circ}$ C, nos résultats présentent un écart relatif moyen de 1.7% par rapport à celles données par E. Hala et T. Boublik [3]. Cependant pour ce même composé, les valeurs des pressions de vapeur, reportées par D. V. S. Jain et R. S. Sidhu [4], sont 46.22 mmHg et 46.02 mmHg à 25°C, et 118.56 mmHg et 118.90 mmHg à 50°C. Les données

Fig. 1 Diagramme expérimental d'équilibre liquide-vapeur du système Morpholine (1)-Pipéridine (2)

Fig. 2 Diagramme expérimental d'équilibre liquide-vapeur du système Morpholine (1)-Tétrahydropyranne (2)

Fig. 3 Diagramme expérimental d'équilibre liquide-vapeur du système Morpholine (1)-1,4-Dioxane (2)

Fig. 4 Diagramme expérimental d'équilibre liquide-vapeur du système 1,4-Dioxane (1)-Tétrahydropyranne (2)

reportées par ces auteurs, présentent par rapport à nos résultats, un écart relatif moyen compris entre 0.1 et 0.6%.

Les valeurs de la pression de vapeur du tétrahydropyranne ont été calculées à l'aide de l'équation de Lee et Kesler [14], dans le domaine de température 25-70°C. Ces valeurs présentent un écart relatif moyen inférieur à 2% par rapport à nos résultats.

Pressions de vapeur des mélanges binaires

Les pressions de vapeur des quatre systèmes ont été mesurées à six températures dans l'intervalle 298.15-343.15 K. Les résultats expérimentaux sont donnés dans le tableau 3 et sont représentés par les figures 1 à 4. Dans le tableau 3, nous avons réuni, pour chaque système, à chaque température, la fraction molaire x_1 du composé 1 dans la phase liquide et la pression totale P, expérimentales, ainsi que l'écart relatif moyen $\delta P/P$ exprimé en pourcentage.

Pour calculer l'enthalpie libre molaire totale d'excès et la composition de la phase vapeur, nous avons utilisé la méthode de Barker [2]. Le calcul nécessite la connaissance du volume molaire v_i^o et du second coefficient molaire du viriel B_{ii} de chaque composé *i* à chaque température. Les seconds coefficients mo-

laires du viriel B_{ii} ont été calculés en utilisant la méthode de Tsonopoulos [10, 11]. Les volumes molaires v_i° ont été déduits à partir de données de la littérature [6, 7, 8]. Ces grandeurs sont réunies dans le tableau 4. Le second coefficient molaire du viriel B_{12} relatif aux mélanges, a été pris comme combinaison de ceux des constituants purs correspondants.

Fraction		Enthalpie libre molaire totale d'excès g^{E} / J·mol ⁻¹								
molaire (x_1)	298.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K				
0.0	0	0	0	0	0	0				
0.1	112	109	103	100	96	95				
0.2	195	190	181	175	169	166				
0.3	252	246	236	229	221	216				
0.4	286	280	269	260	252	246				
0.5	298	292	281	271	262	256				
0.6	289	282	271	261	253	246				
0.7	257	250	239	230	222	216				
0.8	201	195	184	177	171	166				
0.9	117	113	105	101	97	94				
1.0	0	0	0	0	0	0				

Tableau 6a Système: morpholine (1) - tétrahydropyranne (2)

Tableau 6b Paramètres de lissage de l'équation de Redlich-Kister

<i>T /</i> K	A 1	σA_1	A ₂	σ <i>A</i> 2	A 3	σA_3
298.15	0.4809	0.0037	0.0127	0.0070	0.0503	0.0111
303.15	0.4626	0.0026	0.0106	0.0050	0.0392	0.0080
313.15	0.4309	0.0017	0.0067	0.0034	0.0194	0.0054
323.15	0.4037	0.0013	0.0032	0.0027	0.0163	0.0044
333.15	0.3788	0.0019	0.0035	0.0039	0.0134	0.0062
343.15	0.3583	0.0012	-0.0010	0.0026	0.0137	0.0041

Les enthalpies libres molaires totales d'excès ont été représentées à l'aide de l'équation de Redlich-Kister:

$$\frac{g^{E}}{RT} = x_{1}x_{2}\sum_{i=1}^{n}A_{i}(x_{1} - x_{2})^{i-1}$$
(2)

où x_1 est la fraction molaire du constituant *i* dans le mélange. Les valeurs de l'enthalpie libre molaire totale d'excès g^E , celles des paramètres de lissage A_i ,

ainsi que les déviations standard σA_i de ces paramètres, sont réunies dans les tableaux 5 à 8.

Fraction	Enthalpie libre molaire totale d'excès g^E / J·mol ⁻¹								
molaire (x_1)	298.15 K	303.15 K	313.15 K	323.15 K	333.15 K	343.15 K			
0.0	0	0	0	0	0	0			
0.1	68	62	56	54	48	50			
0.2	114	105	94	89	83	81			
0.3	143	132	119	111	105	98			
0.4	160	148	134	124	117	106			
0.5	166	154	140	130	121	108			
0.6	164	150	139	128	118	105			
0.7	150	136	127	118	108	96			
0.8	122	110	103	97	87	78			
0.9	74	69	63	59	52	48			
1.0	0	0	0	0	0	0			

Tableau 7a Système: morpholine (1) - 1,4-dioxane (2)

Tableau 7b Paramètres de lissage de l'équation de Redlich-Kister

<u>T</u> /K	<i>A</i> ₁	σA_1	A ₂	σA_2	A3	5A ₃
298.15	0.2685	0.0085	0.0177	0.0169	0.0784	0.0276
303.15	0.2437	0.0073	0.0101	0.0148	0.0619	0.0241
313.15	0.2158	0.0064	0.0184	0.0133	0.0580	0.0218
323.15	0.1929	0.0053	0.0146	0.0112	0.0637	0.0184
333.15	0.1749	0.0058	0.0062	0.0126	0.0461	0.0207
343.15	0.1518	0.0054	-0.0055	0.0120	0.0611	0.0199

Pour chaque système et à chaque température nous avons calculé, la fraction molaire y_i du composé 1 dans la phase vapeur ainsi que la pression totale, pour des fractions molaires x_1 variant à intervalle régulier. Les équations utilisées sont:

$$y_{i} = \frac{x_{i}P_{i}^{o}}{P} \exp\left(\frac{g_{i}^{E} - (B_{i} - v_{i}^{o})(P - P_{i}^{o}) - 2PB_{12}^{E}(1 - y_{i})^{2}}{RT}\right)$$
(3)

$$P = \sum_{i=1}^{2} x_i P_i^o \exp\left(\frac{g_i^E - (B_i - v_i^o)(P - P_i^o) - 2PB_{12}^E(1 - y_i)^2}{RT}\right)$$
(4)

Fig. 5 Equilibre liquide-vapeur du système: Morpholine (1)-Pipéridine (2); points: valeurs expérimentales directes; courbes: valeurs calculées

Fig. 6 Equilibre liquide-vapeur du système: Morpholine (1)-Tétrahydropyranne (2); points: valeurs expérimentales directes; courbes: valeurs calculées

-

$$B_{12}^{E} = B_{12} - \frac{B_1 + B_2}{2} \quad \text{et} \quad P_i^0 = P \quad \dot{a} \quad x_i = 1$$

$$\frac{g_1^E}{RT} = x_2^2 \left[A_1 + \sum_{i=2}^n A_i ((2i - 1)x_1 - x_2)(x_1 - x_2)^{i-2} \right]$$

$$\frac{g_2^E}{RT} = x_1^2 \left[A_1 + \sum_{i=2}^n A_i (x_1 - (2i - 1)x_2)(x_1 - x_2)^{i-2} \right]$$

Pour illustrer ce calcul, nous avons choisi les deux températures extrêmes. Nous avons réuni les résultats dans le tableau 9 et représenté les diagrammes d'équilibre liquide-vapeur (P, x_1, y_1) sur les figures 5 à 8.

Fraction	Enthalpie libre molaire totale d'excès g^E / J·mol ⁻¹			
molaire (x_1)	303.15 K	313.15 K	323.15 K	333.15 K
0.0	0	0	0	0
0.1	77	72	69	68
0.2	138	130	125	122
0.3	182	173	167	162
0.4	210	201	194	187
0.5	220	212	205	197
0.6	213	206	200	192
0.7	188	183	177	170
0.8	144	141	137	131
0.9	82	80	78	74
1.0	0	0	0	0

Tableau 8a Système: 1,4-dioxane - tétrahydropyranne (2)

Tableau 8b Paramètres de lissage de l'équation de Redlich-Kister

<i>T /</i> K	A ₁	σA1	A2	σA2
303.15	0.3492	0.0038	0.0128	0.0093
313.15	0.3254	0.0028	0.0215	0.0072
323.15	0.3049	0.0025	0.0231	0.0064
333.15	0.2847	0.0023	0.0168	0.0062

Fig. 7 Equilibre liquide-vapeur du système: Morpholine (1)-1,4-Dioxane (2); points: valeurs expérimentales directes; courbes: valeurs calculées

Fig. 8 Equilibre liquide-vapeur du système: 1,4-Dioxane (1)-Tétrahydropyranne (2); points: valeurs expérimentales directes; courbes: valeurs calculées

	Système: me	orpholine (1) – pi	péridine (2)	
Fraction	T=29	8.15 K	T = 34	3.15 K
molaire (x_1)	P / kPa	y1	P / kPa	y 1
0.0	4.041	0.000	30.648	0.000
0.1	3.845	0.049	29.301	0.057
0.2	3.644	0.096	27.922	0.113
0.3	3.432	0.144	26.499	0.172
0.4	3.208	0.196	25.017	0.234
0.5	2.972	0.255	23.456	0.302
0.6	2.723	0.323	21.789	0.380
0.7	2.456	0.406	19.980	0.472
0.8	2.161	0.513	17.972	0.589
0.9	1.811	0.676	15.688	0.750
1.0	1.348	1.000	13.009	1.000
	Système: morph	oline (1) – tétrah	ydropyranne (2)	
Fraction	T = 298.15 K		T = 343.15 K	
molaire (x_1)	P / kPa	yı	P / kPa	<u>y</u> 1
0.0	9.385	0.000	56.912	0.000
0.1	8.697	0.023	53.135	0.034
0.2	8.041	0.046	49.440	0.068
0.3	7.388	0.069	45.749	0.103
0.4	6.721	0.096	41.990	0.143
0.5	6.029	0.127	38.095	0.190
0.6	5.299	0.167	33.989	0.247
0.7	4.515	0.221	29.579	0.322
0.8	3.646	0.304	24.743	0.430
0.9	2.629	0.465	19.306	0.611
1.0	1.348	1.000	13.009	1.000
	Système: mo	orpholine (1) – 1.4	l-dioxane (2)	
Fraction	T = 298.15 K		T = 343.15 K	
molaire (x_1)	P / kPa	<i>y</i> 1	P / kPa	<i>y</i> 1
0.0	4.768	0.000	35.229	0.000
0.1	4.482	0.038	33.316	0.046
0.2	4.194	0.076	31.363	0.092
0.3	3.896	0.117	29.332	0.143
0.4	3.584	0.165	27.216	0.202
0.5	3.261	0.223	25.030	0.272

Tableau 9 Pression et composition de la phase vapeur, calculées

925

Fraction	T = 298.15 K		T = 343.15 K	
molaire (x_1)	P / kPa	y1	P / kPa	У1
0.6	2.928	0.292	22.799	0.354
0.7	2.586	0.379	20.536	0.454
0.8	2.227	0.494	18.219	0.579
0.9	1.830	0.667	15.769	0.746
1.0	1.348	1.000	13.009	1.000
	Système: 1,4-di	oxane (1) – tétrah	ydropyranne (2)	
Fraction	T = 303.15 K		T = 333.15 K	
molaire (x_1)	P / kPa	уі	P / kPa	уι
0.0	11.839	0.000	40.087	0.000
0.1	11.503	0.071	39.155	0.077
0.2	11.135	0.139	38.118	0.151
0.3	10.735	0.206	36.973	0.225
0.4	10.297	0.273	35.712	0.299
0.5	9.817	0.345	34.316	0.377
0.6	9.281	0.424	32.760	0.462
0.7	8.675	0.516	31.003	0.557
0.8	7.976	0.629	28.992	0.669
0.9	7.154	0.780	26.651	0.810
1.0	6.170	1.000	23.880	1.000

Tableau	9 ((suite)	ł
---------	-----	---------	---

Conclusion

Nos valeurs expérimentales de pressions de vapeur, dans le cas des corps purs, sont en bon accord avec celles de la littérature [3-5, 7, 12-14]. Pour les quatre mélanges binaires étudiés on ne dispose pas de données de comparaison.

L'enthalpie libre molaire totale d'excès g^E pour ces quatre systèmes, est positive et diminue lorsque la température augmente. Elle prend une valeur maximale pour des mélanges équimolaires, dans le cas des systèmes, morpholine+ tétrahydropyranne et 1,4-dioxane tétrahydropyranne. Ce maximum est légèrement décalé du côté des mélanges riches en morpholine, pour les deux autres systèmes.

Les résultats expérimentaux que nous avons obtenus nous serviront à appliquer la théorie du réseau rigide dans sa version contribution de groupements fonctionnels [9], dans le cadre d'une étude des interactions moléculaires dans des mélanges binaires contenant des molécules polaires ou fortement polaires. Cette application fera l'objet d'une prochaine publication.

Bibliographie

- 1 J. Jose, Thèse de Doctorat de 3^{ème} Cycle, Lyon I, 1970.
- 2 J. A. Barker, Austr. J. Chem., 6 (1953) 23.
- 3 E. Hala et T. Boublik, Vapour Pressure of Compounds, Elsevier, 1973.
- 4 D. V. S. Jain et R. S. Sidhu, J. Chem. Thermodyn., 16 (1984) 111.
- 5 S. Cabani et N. Ceccanti, J. Chem. Thermodyn., 5 (1973) 9.
- 6 J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Vols 1 and 2, Elsevier, Amsterdam 1950.
- 7 Physical Properties of Chemical Compounds, Vols 1 and 2, Advanced Chemical Series 1959.
- 8 R. C. Reid, J. M. Prausnitz et B. E. Poling, The properties of Gases and Liquids, 4th ed. McGraw-Hill, 1987.
- 9 H. V. Kehiaian, J. P. Grolier et G. C. Benson, J. Chem. Phys., 11/12 (1978) 75.
- 10 C. Tsonopoulos, AICHE J., 20 (1974) 263.
- 11 C. Tsonopoulos, AICHE J., 21 (1975) 827.
- 12 C. Pettenati, P. Alessi, M. Fermeglia et I. Kikic, Fluid Phase Equilibria, 54 (1990) 81.
- 13 M. Palczewska-Tulinska, M. Cholinski, A. Safranski et D. Wyrzykowska-Stankiewicz, Fluid Phase Equilibria, 11 (1983) 233.
- 14 B. I. Lee et M. G. Kesler, AICHE J., 21 (1975) 510.

Zusammenfassung — Von den Autoren wurde der Gasdruck der vier binären Systeme Morpholin + Piperidin, Morpholin + 1,4-Dioxan, Morpholin + Tetrahydropyran und 1,4-Dioxan + Tetrahydropyran vermessen. Die Messungen wurden mit Hilfe eines von J. Jose [1] gebauten Isoteniskopes durchgeführt. Für diese Gemische werden Gasdruck und überschüssige Gibbs'sche freie Energie für 298.15 K, 303.15 K, 313.15 K, 323.15 K, 333.15 K und 343.15 K angegeben. Die überschüssige Gibbs'sche freie Energie wurde nach der Redlich-Kister-Gleichung bemessen.